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Abstract We consider the joint distributions of particle positions for the continuous time
totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm de-
terminants with a kernel defining a signed determinantal point process. We then consider
certain periodic initial conditions and determine the kernel in the scaling limit. This result
has been announced first in a letter by one of us (Sasamoto in J. Phys. A 38:L549–L556,
2005) and here we provide a self-contained derivation. Connections to last passage directed
percolation and random matrices are also briefly discussed.

1 Introduction

Continuous Time TASEP. The totally asymmetric simple exclusion process (TASEP) is
one of the simplest interacting stochastic particle systems. Its particles are on the lattice of
integers, Z, with at most one particle at each site (exclusion principle). The dynamics of
the TASEP is defined as follows. Particles jump on the neighboring right site with rate 1
provided that the site is empty. This means that jumps are independent of each other and
take place after an exponential waiting time with mean 1, which is counted from the time
instant when the right neighbor site is empty.
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On the macroscopic level the particle density, u(x, t), evolves deterministically according
to the Burgers equation ∂tu+ ∂x(u(1 −u)) = 0 [32]. Therefore a natural question is to focus
on fluctuation properties and on large deviations, which exhibit rather unexpected features.
The fluctuations of the integrated particle current and in the positions of particles are two
faces of the same coin as to be discussed later.

The fluctuations of particle positions are sensitive to the initial conditions. For exam-
ple, one can consider particles initially positioned every second site, i.e., on 2Z. Another
possibility would be to consider the stationary measure of the same density as this initial
condition, which is Bernoulli with density 1/2. The scaling exponents for particle positions
fluctuations are the same for the two initial conditions. However, the limiting distribution
differ: as we will see, in the first case it is the GOE Tracy-Widom of random matrices [41]
which differs from the stationary case [12]. Thus it is of interest to understand which class
of initial conditions leads to the same limit distribution.

The first result in this direction has been obtained for the step initial condition. To be pre-
cise, denote by xk(t) the position of particle k at time t , where the k’s are integers labelling
the particles from right to left. The step initial condition is then xk(0) = −k, k ∈ N. It has
been studied by Johansson [15] by means of a growth model. In terms of the TASEP, the
quantity analyzed is the large time asymptotic fluctuations of the position of a given particle.
For any fixed α ∈ (0,1), the fluctuation of x[αt](t) are asymptotically governed by the GUE
Tracy-Widom distribution, F2, namely there are some v = v(α) and b = b(α) such that

lim
t→∞ P(x[αt](t) ≤ v(α)t + sb(α)t1/3) = F2(s). (1.1)

The distribution F2 first appeared in the context of the Gaussian Unitary Ensemble (GUE)
of random matrices as the distribution of the largest eigenvalue in the limit of large matrix
dimension [40].

A natural question is to ask how the positions of different particles are correlated, i.e.,
one considers for fixed but large time t the process k �→ xk(t). To illustrate known results
we focus at k ∼ t/4, but the same holds with different numerical coefficients for k ∼ αt ,
α ∈ (0,1).1 Equation (1.1) tells us that the fluctuations live on a t1/3 scale and it turns out that
the position of two particles are, on the t1/3 scale, non-trivially correlated over a distance of
order t2/3. The exponents 1/3 and 2/3 are indeed the ones of the KPZ universality class [18],
to which the TASEP belongs. Indeed, Johansson [16] proves a functional limit theorem in a
discrete-time setting. Its continuous-time version writes

lim
t→∞

x[t/4+u(t/2)2/3](t) − (−2u(t/2)2/3 + u2(t/2)1/3)

−(t/2)1/3
= A2(u) (1.2)

where A2 is known as the Airy process, first discovered in the PNG model under droplet
growth [29].

Besides the step initial condition explained above, at least two other situations are of
particular interest. One is the stationary initial condition, for which the two-point function
of the TASEP is analyzed in [12]. The second one has deterministic initial conditions lead-
ing to a macroscopically uniform density, thus called flat initial conditions. The simplest
realization is to set xk(0) = −2k, k ∈ Z.

1We choose α = 1/4 because then the term linear in t disappears in (1.2), (1.3), and (1.6).
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In [34] an important new result has been obtained, making possible the asymptotic analy-
sis for such initial conditions. First of all, as expected by universality, the position of a par-
ticle has fluctuations governed by the GOE Tracy-Widom distribution, F1 [41]. This result
is a combination of [11, 34] and states

lim
t→∞ P(x[t/4](t) ≤ −st1/3) = F1(2s). (1.3)

More importantly, in [34] the analogue of the Airy process A2 for flat initial conditions,
which we denote by A1, is identified. It is a marginal of the signed determinantal point
process with the extended kernel (1.4). Here signed refers to the non-positiveness of the
measure (it does not define a probability measure). Explicitly, let B0(x, y) = Ai(x + y) and
let � be the one-dimensional Laplacian; then

KA1(u1, s1;u2, s2) = −(e(u2−u1)�)(s1, s2)1(u2 > u1) + (e−u1�B0e
u2�)(s1, s2), (1.4)

or, equivalently as shown in Appendix 1,

KA1(u1, s1;u2, s2) = − 1√
4π(u2 − u1)

exp

(
− (s2 − s1)

2

4(u2 − u1)

)
1(u2 > u1)

+ Ai(s1 + s2 + (u2 − u1)
2)

× exp

(
(u2 − u1)(s1 + s2) + 2

3
(u2 − u1)

3

)
. (1.5)

This is in complete analogy with the Airy process A2, which is a marginal of the determi-
nantal point process defined by the extended Airy kernel.

In Theorem 2.1 we provide a derivation of the fact that the joint distribution of particle
positions is given by the Fredholm determinant of a kernel. This is a general result which is
then applied to the flat initial conditions xk(0) = −2k, k ∈ Z, see Theorem 2.2. The proper
rescaling of particle positions is

xresc
t (u) = −t−1/3(x[t/4+ut2/3](t) + 2ut2/3). (1.6)

With this rescaling, in the limit of large time t , the kernel converges to KA1 as shown in
Theorem 2.3. There we show pointwise convergence. In a forthcoming paper [4] we will
analyze a discrete time version of the TASEP and strengthen our result to the convergence
of the Fredholm determinants. Such a stronger convergence would imply the convergence
of (1.6) to A1 in the sense of finite-dimensional distributions.

As a remark we want to point out that, while periodic initial condition does not seem
to be accessible by previously known techniques, with the new construction both step and
periodic initial conditions can be analyzed. The technique used so far is the reduction of the
model to a determinantal point process via the Robinson-Schensted-Knuth correspondence.
For further references and details on determinantal point processes we refer the reader to
surveys [14, 17, 22, 37] and the lecture notes [38].

Reformulation of the Result. The TASEP integrated current at position x and time t ,
J (x, t), is the number of particles which jumped from site x to site x + 1 during the time
interval [0, t]. Let us label by 1 the right-most particle starting at position x1(0) ≤ x. Then
P(J (x, t) ≥ s) = P(xs(t) ≥ x + 1). Thus the result of this paper translates directly to the
integrated currents.
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The TASEP can be mapped to last passage percolation on Z
2 with i.i.d. exponentially

distributed random variables ω(i, j), i, j ∈ Z. ω(i, j) is the waiting time of particle number
j to jump from position i − j to i − j + 1. There is a slight switch in the point of view. For
the TASEP one considers the particle positions at fixed time t , while in last passage perco-
lation, one studies the last passage time from the origin to points of a given lattice domain
{i, j ∈ Z

2, i + j = t}. These two points of view are closely connected. They can be regarded
as taking different cross sections in the Bernoulli cone [27]. The problem considered in [15]
is the point-to-point last passage percolation, which corresponds to the step initial condition
for the TASEP. Flat initial conditions correspond to the point-to-line percolation.

Finally, the same last passage percolation model can be seen as a one-dimensional growth
model [15, 33], called discrete polynuclear growth model, which serves as a discretized
model for KPZ growth [18]. KPZ growth is discussed in the books [2, 23] but for a recent
exposition of KPZ universality see [27].

Universality Issue. The TASEP also has discrete time versions. One of these is the parallel
update rule (see the review [36]) and it is given as follows. At each time step particles
jump to the neighboring right site with probability p ∈ (0,1), provided the target site is
empty. The jumps occurs independently and simultaneously. There are two interesting limits
of the discrete-time TASEP, namely p → 0 and p → 1. The continuous-time TASEP is
obtained by setting the time-unit to p and then take p → 0. The limit p → 1 yields the so-
called polynuclear growth (PNG) model, see e.g. Sect. 2.1.5 of [9]. There, one has a height
function h on a one-dimensional substrate, and flat initial condition for the TASEP translates
to growth starting with h(x, t = 0) = 0, also called flat PNG.

By universality the process A1 is expected to appear in the discrete-time TASEP and
the PNG model as well. Universality has been confirmed for step initial conditions and the
corresponding PNG model with droplet growth [16, 29]. Moreover, for flat initial conditions,
the limit process should be independent on the initial particle spacing. Results in a discrete-
time version of the TASEP with different initial spacing will be presented in [4].

For the flat PNG model, it is known [1, 28] that the height at one fixed point is GOE
Tracy-Widom distributed in the limit of large time t . Thus, on the basis of the result for the
TASEP with alternating initial conditions, see Theorem 2.3, we can conjecture the behavior
of the flat PNG model.

Conjecture 1 The properly rescaled height function of the PNG model with flat initial con-
ditions converges, in the large time limit, to the process A1.

The scaling exponents are the same and the coefficients can be determined by matching
with the PNG droplet case.

Finally, let us discuss the connection to random matrices. For the TASEP with the step
initial condition, the one-point asymptotic distribution is the GUE Tracy-Widom distribu-
tion, F2, and the whole limit process is the Airy process A2. The derivation uses an extension
of the model to a multi-layer version. The Airy process arises also for a GUE matrix diffu-
sion, the so-called β = 2 Dyson’s Brownian Motion [6]. The motion of the properly rescaled
largest eigenvalue converges to the Airy process. The connection extends to finitely many
of the largest eigenvalues which have the same limiting behavior as the first top layers in the
multi-layer PNG model.

For the TASEP with flat initial condition, the one-point distribution is the GOE Tracy-
Widom distribution and the limit process is A1. At this point it is tempting to conjecture that
the evolution of the largest eigenvalue of a matrix which follows β = 1 Dyson’s Brownian
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Motion has the same limiting behavior as the surface height for flat PNG, namely the A1

process. The correspondence at the level of top eigenvalues for GOE and the top layers of
the multi-layer flat PNG at a fixed position has been proven in [8], making the conjecture
even more plausible. Knowing the analogue of the Airy process for random growth with flat
initial conditions one can guess the result for β = 1 Dyson’s Brownian Motion [6].

Conjecture 2 The evolution of the largest eigenvalue of N ×N matrices for β = 1 Dyson’s
Brownian Motion converges, in the limit N → ∞ and properly rescaled, to the process A1.

Again, the prefactors for the scaling can be easily calculated by matching the known
one-point distributions and the behavior of joint distributions at short distances. This con-
jecture concerns only the largest eigenvalue and with this approach we are unable to make a
conjecture for the other eigenvalues.

To make Conjecture 2 more transparent, we explain it in the simpler case of the two-
matrix model. There, one considers two real symmetric N × N matrices, M(0) and M(t),
with joint distribution

1

ZN,t

exp

(
−Tr(M(0))2

2N

)
exp

(
−Tr(M(t) − qM(0))2

2N(1 − q2)

)
dM(0)dM(t) (1.7)

where q = exp(−t/2N) and dM(·) = ∏
1≤i≤j≤N dM(·)i,j . Let λmax(0) and λmax(t) be the

largest eigenvalues of M(0) and M(t). These eigenvalues fluctuate on a scale of order N1/3

and are non-trivially correlated if one chooses t ∼ N2/3. Then Conjecture 2 means that,
properly rescaled, the joint distribution of λmax(0) and λmax(t) converges to the two-point
joint distribution of the process A1 in the N → ∞ limit.

We also refer to the surveys on the question of universality in mathematics and physics [5]
and on connections between different models, including random matrices [10].

Outline. The paper is organized as follows: In Sect. 2 we state the main result. In Sect. 3
the kernel of the signed determinantal point process describing the joint particle distributions
is derived. The kernel involves an orthogonalization which is carried out in Sect. 4 for the
case of alternating initial conditions. In Sect. 5 we prove the convergence of the properly
rescaled kernel to the kernel KA1 . In Appendix 1 we explain how the compact form of the
kernel is derived, and in Appendix 2 we explain how the orthogonalization can be carried
out using classical Charlier orthogonal polynomials.

2 Model and Results

In this paper we consider the continuous-time totally asymmetric simple exclusion process
(TASEP) on Z. At any given time t , every site j ∈ Z can be occupied at most by one particle.
Thus a configuration of the TASEP can be described by η ∈ {0,1}Z = 
. ηj is called the
occupation variable of site j , which is defined by ηj = 1 if site j is occupied and ηj = 0 if
site j is empty.

The dynamics of the TASEP is defined as follows. Particles jump on the neighboring
right site with rate 1 provided that the site is empty. This means that jumps are independent
of each other and are performed after an exponential waiting time with mean 1, which starts
from the time instant when the right neighbor site is empty. More precisely, let f :
 → R
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be a function depending only on a finite number of ηj ’s. Then the backward generator of the
TASEP is given by

Lf (η) =
∑
j∈Z

ηj (1 − ηj+1)(f (ηj,j+1) − f (η)). (2.1)

Here ηj,j+1 denotes the configuration η with the occupations at sites j and j + 1 inter-
changed. The semigroup eLt is well-defined as acting on bounded and continuous functions
on 
. eLt is the transition probability of the TASEP [21].

Joint Distributions

Let us start at time t = 0 with N particles at positions yN < · · · < y2 < y1. Then the main
result is the joint distribution of any subset of these particles at time t > 0. It turns out
that it can be described by a signed determinantal point process, where signed refers to the
non-positiveness of the measure.

Theorem 2.1 Let σ(1) < σ(2) < · · · < σ(m) be the indices of m out of the N particles. The
joint distribution of their positions xσ(k)(t) is given by

P

(
m⋂

k=1

{xσ(k)(t) ≥ ak}
)

= det(1 − χaKtχa)
2({σ(1),...,σ (m)}×Z) (2.2)

where χa(σ (k), x) = 1(x < ak). Kt is the extended kernel with entries

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +
n2−1∑
i=0

�
n1
n1−n2+i (x1)�

n2
i (x2) (2.3)

where

φ(n1,n2)(x1, x2) =
(

x1 − x2 − 1

n2 − n1 − 1

)
, (2.4)

�n
i (x) = 1

2π i

∮
�0

dw

wi+1

(1 − w)i

wx−yn−i
et (w−1), (2.5)

and the functions �n
i (x), i = 0, . . . , n − 1, form a family of polynomials of degree ≤ n

satisfying
∑
x∈Z

�n
i (x)�n

j (x) = δi,j . (2.6)

The path �0 in the definition of �n
i is any simple loop, anticlockwise oriented, which includes

the pole at w = 0 but not the one at w = 1.

The dependence on the set {yi} is hidden in the definition of the �n
i ’s and the �n

i ’s but is
omitted, since the set {yi} is fixed in the following.
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Alternating Initial Configuration

Now we consider alternating initial configuration, namely

ηi(0) =
{

1, if i is even,
0, if i is odd.

(2.7)

The alternating initial configuration can be obtained by taking 2N particles around the ori-
gin, for example at positions 2Z ∩ [−2N,2N − 2], and then taking the limit N → ∞. In
Lemma 4.1 we do the orthogonalization, i.e., construct �n

i ’s which satisfy (2.6) for this
special case, from which the kernel Kt is obtained.

Theorem 2.2 Let particle with label ni start at −2ni , i ∈ Z. At time t , the particles are at
positions xi . The kernel (2.3) for the alternating initial configuration is given by

Kt(n1, x1;n2, x2) = −
(

x1 − x2 − 1

n2 − n1 − 1

)
+ −1

2π i

∮
�0

dv
(1 + v)x2+n1+n2

(−v)x1+n1+n2+1
e−t (1+2v) (2.8)

where �0 is any simple loop, anticlockwise oriented, which includes the pole at v = 0 but do
not include v = −1.

Scaling Limit

The particle density is 1/2 and since particles jump to the right with rate 1 provided the site
is empty, the mean speed of the particles is 1/2. Let us number the particles from right to left
with y1(0) = 0 as reference point, i.e., yi(0) = −2(i − 1), i ∈ Z. Then the particles which at
time t are close to x = 0 are the particles with numbers close to t/4. From universality we
know also that the scaling exponent for fluctuations should be 1/3 and the one for spatial
correlations should be 2/3. Therefore, the scaling limit to be considered is

xi = [−2uit
2/3 − si t

1/3], ni = [t/4 + uit
2/3]. (2.9)

Remark The scaling exponents for this model are determined by the requirement that there
is a non-trivial limit. The numerical factor in front of t1/3 is chosen so that the single-time
kernel has a simple form, Ai(x +y). The numerical factors for the t2/3 terms are set in such a
way that the propagator in (1.4) is generated by the Laplacian without additional prefactors.
Universality argument is not needed to obtain the result, but it is useful to predict the correct
answer.

In Sect. 5 we carry out the asymptotic analysis for the pointwise convergence of the
kernel, with the following result.

Theorem 2.3 (Pointwise convergence of the kernel) Let x1, n1, x2, n2 be rescaled as
in (2.9). Then, for any s1, s2, u1, u2 ∈ R fixed,

lim
t→∞Kt(n1, x1;n2, x2)t

1/32x2−x1 = KA1(u1, s1;u2, s2) (2.10)

where the extended kernel KA1 is given in (1.5).
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In this paper we do not perform the asymptotic analysis necessary to get convergence
of the Fredholm determinants. We will do the complete analysis in a discrete-time version
of the TASEP in a forthcoming paper [4], from which the continuous time limit follows
as a corollary. Nevertheless, it is instructive for the reader to see the implications of the
convergence of the Fredholm determinant.

Let A1 be the process with m-point joint distributions at u1 < u2 < · · · < um given by

P

(
m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1 − χsKA1χs)L2({u1,...,um}×R) (2.11)

where χs(uk, x) = 1(x > sk). The convergence of Fredholm determinant would then imply

lim
t→∞

x[t/4+ut2/3](t) + 2ut2/3

−t1/3
= A1(u), (2.12)

with the convergence understood in the sense of finite-dimensional distributions.

3 Signed Determinantal Point Process

In this section we prove Theorem 2.1. Consider the TASEP with N particles starting at time
t = 0 at positions yN < · · · < y2 < y1. The first step is to obtain the probability that at time
t these particles are at positions xN < · · · < x2 < x1, which we denote by

G(x1, . . . , xN ; t) = P((xN , . . . , x1; t)|(yN , . . . , y1;0)). (3.1)

This function has been determined before using Bethe-Ansatz method [35].

Lemma 3.1 (Schütz [35]) The transition probability has a determinantal form

G(x1, . . . , xN ; t) = det(Fi−j (xN+1−i − yN+1−j , t))1≤i,j≤N (3.2)

with

Fn(x, t) = (−1)n

2π i

∮
�0,1

dw

w

(1 − w)−n

wx−n
et(w−1), (3.3)

where �0,1 is any simple loop oriented anticlockwise which includes w = 0 and w = 1.

This representation of the transition probability was utilized to study the current fluctua-
tions in [24, 30]. To study the joint distribution, we need a decomposition of G(x1, . . . , xN ; t)
given in the next lemma. This decomposition is obtained using only the recurrence relation

Fn−1(x, t) = Fn(x, t) − Fn(x + 1, t) (3.4)

and its integrated form

Fn+1(x, t) =
∑
y≥x

Fn(y, t). (3.5)
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Actually, (3.5) comes from (3.4) and the fact that limy→∞ Fn(y, t) = 0 fast enough (so that
r.h.s. of (3.5) is well defined). The other property needed to obtain Theorem 2.1 is the fol-
lowing. Comparing (2.5) and (3.3), we have

�N
k (x) = (−1)kF−k(x − yN−k, t) (3.6)

for k ≥ 0. Notice that, for n = −k < 0, (3.3) defining Fn has actually only one pole at w = 0.
We then get the relation

Fn+1(x, t) = −
∑
y<x

Fn(y, t), (3.7)

which translates into

�N
N−k(x) =

∑
y<x

�N+1
N+1−k(y). (3.8)

In the definition of the �N
k ’s in Theorem 2.1, the path �0 includes only the pole at the origin,

exactly because we need (3.8) to hold also for k < 0.

Lemma 3.2 Let us denote xk = xk
1 , k = 1, . . . ,N . Then

G(x1, . . . , xN ; t) =
∑
D

det(F−j (x
N
i+1 − yN−j , t))0≤i,j≤N−1 (3.9)

where the sum is over the following set

D = {xj

i ,2 ≤ i ≤ j ≤ N |xj

i > x
j+1
i , x

j

i ≥ x
j−1
i−1 }. (3.10)

See Fig. 1 for a graphical representation of D.

This lemma is actually more general as shown in [34]. By applying just the recur-
sion relation (3.5) the domain of summation in Lemma 3.2 would be D′ = {xj

i ,2 ≤ i ≤
j ≤ N |xj

i ≥ x
j−1
i−1 } instead of D. The reduction of the summation domain to D uses only the

antisymmetry of the determinant. Thus the same holds for any antisymmetric function f . It
might be interesting in other applications, so we state it explicitly.

Lemma 3.3 Let f an antisymmetric function of {xN
1 , . . . , xN

N }. Then, whenever f has
enough decay to make the sums finite,

∑
D

f (xN
1 , . . . , xN

N ) =
∑
D′

f (xN
1 , . . . , xN

N ) (3.11)

Fig. 1 Graphical representation
of the domain of integration D
for N = 4. One has to “integrate”

out the variables x
j
i

, i ≥ 2 (i.e.,
the black dots). The positions
of xk

1 , k = 1, . . . ,N are given
(i.e., the white dots)
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where

D = {xj

i ,2 ≤ i ≤ j ≤ N |xj

i > x
j+1
i , x

j

i ≥ x
j−1
i−1 },

D′ = {xj

i ,2 ≤ i ≤ j ≤ N |xj

i ≥ x
j−1
i−1 },

(3.12)

and the positions x1
1 > x2

1 > · · · > xN
1 being fixed.

Proof of Lemma 3.2 The proof consists in applying the property (3.5) iteratively and using
the multilinearity of the determinants. From Lemma 3.1 we have

G(x1
1 , . . . , x

N
1 ; t) = det

⎡
⎢⎢⎣

F0(x
N
1 − yN, t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...

FN−1(x
1
1 − yN, t) · · · F0(x

1
1 − y1, t)

⎤
⎥⎥⎦ . (3.13)

The first step is to rewrite the last row as

∑
x2

2≥x1
1

[FN−2(x
2
2 − yN, t) · · · F−1(x

2
2 − y1, t) ] . (3.14)

The second step is to apply the same procedure to the last and second to last rows, which
become

∑
x2

2≥x1
1

∑
x3

3≥x2
2

[FN−3(x
3
3 − yN, t) · · · F−2(x

3
3 − y1, t) ] (3.15)

and
∑

x3
2≥x2

1

[FN−3(x
3
2 − yN, t) · · · F−2(x

3
2 − y1, t) ] (3.16)

respectively. At this point we have

(3.13) =
∑

x2
2 ≥x1

1

∑
x3

3 ≥x2
2

∑
x3

2 ≥x2
1

det

⎡
⎢⎢⎢⎢⎢⎢⎣

F0(x
N
1 − yN, t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...

FN−3(x
3
1 − yN, t) · · · F−2(x

3
1 − y1, t)

FN−3(x
3
2 − yN, t) · · · F−2(x

3
2 − y1, t)

FN−3(x
3
3 − yN, t) · · · F−2(x

3
3 − y1, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.17)

The determinant is antisymmetric in the variables (x3
2 , x

3
3 ), therefore the contribution

of the symmetric part of the summation domain of
∑

x3
3≥x2

2

∑
x3

2≥x2
1

is zero. Since∑
x3

3 ≥x2
2

∑
x3

2≥x2
1

= ∑
x3

3 ≥x2
2

∑
x3

2 ∈[x2
1 ,x2

2 ) +
∑

x3
3≥x2

2

∑
x3

2≥x2
2
, the symmetric part of the domain

is {x3
3 ≥ x2

2 , x
3
2 ≥ x2

2 }, thus the contribution coming from the last sum is zero.
We iterate the same procedure. More precisely, for k = 4, . . . ,N , we apply (3.5) to the

last (k − 1) rows. The new summing variable for the last row is denoted by xk
k , the sec-

ond last row xk
k−1, and so on. Finally, we can delete the sums over the symmetric domain
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Fig. 2 LGV scheme for N = 4.
The LGV graph is left/up-left
directed with weight 1 for each
edge. From N to N + 1 the
transitions are the F ’s

in (xk
2 , . . . , x

k
k ). In this way we get the result

G(x1
1 , . . . , x

N
1 ; t) =

∑
D

det

⎡
⎢⎢⎣

F0(x
N
1 − yN, t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...

F0(x
N
N − yN, t) · · · F−N+1(x

N
N − y1, t)

⎤
⎥⎥⎦ . (3.18)

�

This is the decomposition used in [34]. The “integrations variables” {xn
i , i = 1, . . . , n}

can be interpreted as the positions of particles labelled by i = 1, . . . , n at time n. For ex-
ample, x1

1 , . . . , x
n
1 is the trajectory of particle 1, see also Fig. 2. This is just a mathematical

construction which should not to be confused with the real TASEP particles and the natural
time in the TASEP positions, which at this stage is just the fixed parameter t . At time n there
are n particles at positions xn

1 , . . . , xn
n . At time n + 1, they jump to a randomly uniformly

chosen position satisfying xn+1
k ∈ [xn

k−1, x
n
k ) with the (n + 1)st particle added at position

xn+1
n+1 (≥ xn

n). Then the weight of a configurations of xn
i ’s is given by

W({xn
i ;1 ≤ i ≤ n ≤ N})

=
(

N∏
n=2

det(1(xn−1
i > xn

j ))1≤i,j≤n

)
det(F−j (x

N
i+1 − yN−j , t))0≤i,j≤N−1 (3.19)

where we set xn−1
n = ∞. The products of determinants in (3.19) might look complicated.

However, one can verify that whenever some of the xi ’s do not satisfy the inequalities of D,
then at least one of the determinant vanishes. On the other hand, if the set of xi ’s belongs
to D, then each determinant has value 1.

The form of the weight suggests that the correlation functions could be determinantal.
It is like having a Lindström-Gessel-Viennot (LGV) scheme [42], see [39] for a nice ex-
position, with a sort of reservoir of particles at ∞ and at each time-step a new particle is
introduced. The LGV scheme is a sort of generalization on a class of directed graphs of
the Karlin-McGregor result for diffusions [19]. Determinantal form of correlation functions
appeared in different contexts [3, 7, 13, 16, 25]. Although we do not use the LGV scheme
in the proof, it might be interesting for the reader to see how the weight (3.19) can be de-
scribed in this framework. The situation given by the weight (3.19) corresponds to the limit
U → ∞ of the system with fixed number of particles illustrated in Fig. 2. As U → ∞, the
extra particles are not seen, they go to ∞ in a sort of reservoir.

The proof of Theorem 2.1 is an application of the following lemma, which is proven by
using the framework of [3].
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Lemma 3.4 Assume we have a signed measure on {xn
i , n = 1, . . . ,N, i = 1, . . . , n} given in

the form,

1

ZN

N−1∏
n=1

det[φn(x
n
i , xn+1

j )]1≤i,j≤n+1 det[�N
N−i (x

N
j )]1≤i,j≤N (3.20)

where xn
n+1 are some “virtual” variables and ZN is a normalization constant. If ZN �= 0,

then the correlation functions are determinantal.
To write down the kernel we need to introduce some notations. Define

φ(n1,n2)(x, y) =
{

(φn1 ∗ · · · ∗ φn2−1)(x, y), n1 < n2,
0, n1 ≥ n2

(3.21)

where (a ∗ b)(x, y) = ∑
z∈Z

a(x, z)b(z, y), and, for 1 ≤ n < N ,

�n
n−j (x) := (φ(n,N) ∗ �N

N−j )(y), j = 1,2, . . . ,N. (3.22)

Set φ0(x
0
1 , x) = 1. Then the functions

{(φ0 ∗ φ(1,n))(x0
1 , x), . . . , (φn−2 ∗ φ(n−1,n))(xn−2

n−1 , x),φn−1(x
n−1
n , x)} (3.23)

are linearly independent and generate the n-dimensional space Vn. Define a set of functions
{�n

j (x), j = 0, . . . , n − 1} spanning Vn defined by the orthogonality relations

∑
x

�n
i (x)�n

j (x) = δi,j (3.24)

for 0 ≤ i, j ≤ n − 1.
Under Assumption (A): φn(x

n
n+1, x) = cn�

(n+1)

0 (x), for some cn �= 0, n = 1, . . . ,N − 1,
the kernel takes the simple form

K(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +
n2∑

k=1

�
n1
n1−k(x1)�

n2
n2−k(x2). (3.25)

Remark Without Assumption (A), the correlations functions are still determinantal but the
formula is modified as follows. Let M be the N ×N dimensional matrix defined by [M]i,j =
(φi−1 ∗ φ(i,N) ∗ �N

N−j )(x
i−1
i ). Then

K(n1, x1;n2, x2)

= −φ(n1,n2)(x1, x2) +
N∑

k=1

�
n1
n1−k(x1)

n2∑
l=1

[M−1]k,l(φl−1 ∗ φ(l,n2))(xl−1
l , x2). (3.26)

The “virtual variables” are just there to write the formula in a simpler way, but they do not
represent real variables. This can be seen for example in Assumption (A), where the r.h.s.
does not depend on xn

n+1.
The analogue of the determinantal representation (3.2) for particle-dependent hopping

rates has been recently obtained [31]. Lemma 3.4 might be applied in this context too.

Proof of Lemma 3.4 We apply Proposition 1.2 of [3] and we try to stick as much as possible
to the notations therein. Let, for n = 1, . . . ,N , X(n) denote the space of {xn

i , i = 1, . . . , n},
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Y = X(1) ∪· · ·∪X(N), and let X = {x0
1 , x

1
2 , . . . , x

N−1
N }∪Y be the space on which our measure

(3.20) is defined. Let T (n,n+1) be the matrix with entries

[T (n,m)]i,j = φ(n,n+1)(xn
i , xn+1

j ), 1 ≤ i, j ≤ n + 1 (3.27)

and

[�(N)]i,j = �N
N−j (x

N
i ), 1 ≤ i, j ≤ N. (3.28)

Then the weight (3.20) is proportional to the determinant of

⎡
⎢⎢⎢⎢⎢⎣

0 −T (1,2) 0 · · · 0
0 0 −T (2,3) · · · 0
...

...
...

. . .
...

0 0 0 · · · −T (N−1,N)

�(N) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (3.29)

We are interested in the measure on Y only, thus we change the ordering by putting the
variables x0

1 , . . . , x
N−1
N at the beginning. Let us define the n × (n + 1) matrix W[n,n+1) by

[W[n,n+1)]i,j = φ(n,n+1)(xn
i , xn+1

j ), 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1, (3.30)

and the N × (m + 1) matrix Em by

[Em]i,j =
{

φm(xm
m+1, x

m+1
j ), i = m + 1, 1 ≤ j ≤ m + 1,

0, otherwise.
(3.31)

Then the weight (3.20) is proportional to a suitable symmetric minor of L, with

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 E0 E1 E2 . . . EN−1

0 0 −W[1,2) 0 · · · 0

0 0 0 −W[2,3)

. . .
...

...
...

...
. . .

. . . 0
0 0 0 0 · · · −W[N−1,N)

�(N) 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.32)

By Proposition 1.2 of [3], the point-measure on Y is determinantal with correlation ker-
nel given by

K = 1Y − (1Y + L)−1|Y×Y (3.33)

provided that the partition function ZN �= 0. With the decomposition of
X = {x0

1 , x
1
2 , . . . , x

N−1
N } ∪ Y, we have a block decomposition of L as

L =
[

0 B

C D0

]
(3.34)

with B = [E0, . . . ,EN−1], C = [0, . . . ,0,�(N)]t , and D0 equal to L without the first line
and column of the block representation (3.32). Let D = 1 + D0, then (see, e.g., Lemma 1.5
of [3]) the kernel is given by

K = 1 − D−1 + D−1CM−1BD−1, M = BD−1C. (3.35)
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D−1 was already computed in Lemma 1.5 of [3], with the result

D−1 =

⎡
⎢⎢⎢⎢⎣

1 W[1,2) · · · W[1,N)

0 1
. . .

...
...

. . .
. . . W[N−1,N)

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (3.36)

where

W[n,m) =
{

W[n,n+1) · · ·W[m−1,m), m > n,
0, m ≤ n.

(3.37)

Thus the (n,m) block of 1 − D−1 is W[n,m). Next, we have

D−1C =

⎡
⎢⎢⎢⎣

W[1,N)�
(N)

...

W[N−1,N)�
(N)

�N

⎤
⎥⎥⎥⎦ , (3.38)

and

BD−1 = [E0 E0W[1,2) + E1 · · · ∑N−1
k=1 Ek−1W[k,N) + EN−1 ] . (3.39)

Therefore the (n,m) block of the correlation kernel is given by

K(n,m) = −W[n,m) + W[n,N)�
(N)M−1

(
m−1∑
k=1

Ek−1W[k,m) + Em−1

)
. (3.40)

Using (3.21) one gets [W[n,m)]i,j = φ(n,m)(xn
i , xm

j ). Moreover by (3.22) we have

[W[n,N)�
(N)]i,j =

∑
y

φ(n,m)(xn
i , y)�N

N−j (y) = �n
n−j (x

n
i ). (3.41)

It remains to evaluate the last part of (3.40). For the following N × m matrix we have

[
m−1∑
k=1

Ek−1W[k,m) + Em−1

]
i,j

=
{

(φi−1 ∗ φ(i,m))(xi−1
i , xm

j ), 1 ≤ i ≤ m,

0, m + 1 ≤ i ≤ N .
(3.42)

Notice that the functions in (3.42) form a basis of Vm. Thus we can define a m × m matrix
Bm which does a change of basis to {�m

m−1(x), . . . ,�m
0 (x)}, namely

(φi−1 ∗ φ(i,m))(xi−1
i , x) =

m∑
l=1

[Bm]i,l�m
m−l (x). (3.43)

We multiply this equation by
∑

x �m
m−j (x) and obtain

[Bm]i,j = (φi−1 ∗ φ(i,m) ∗ �m
m−j )(x

i−1
i ). (3.44)
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In particular, we have BN = M . Let us define the N × m matrix

[�(m)]i,j =
{

�m
m−i (x

m
j ), 1 ≤ i ≤ m,

0, m + 1 ≤ i ≤ N .
(3.45)

Then

M−1

(
m−1∑
k=1

Ek−1W[k,m) + Em−1

)
= B−1

N

[
Bm 0
0 0

]
�(m). (3.46)

Assume the condition (B): (3.46) = �(m) for m = 1, . . . ,N . Then we get the simple form
of the kernel, (3.25), of the lemma. However, this is not always the case. For 1 ≤ i, j ≤ m,
we obtain using (3.22),

[Bm]i,j = (φi−1 ∗ φ(i,m) ∗ �m
m−j )(x

i−1
i ) = (φi−1 ∗ φ(i,N) ∗ �N

N−j )(x
i−1
i ) = [BN ]i,j . (3.47)

Thus we can write

BN =
[

Bm �

Qm �

]

for some (N − m) × m matrix Qm. By multiplying on both sides by BN the condition (B),
we see that (B) is equivalent to

m∑
k=1

[Qm]i,k�m
m−k(x) = 0 (3.48)

for all x and for all i = 1, . . . ,N − m, and for all m = 1, . . . ,N . But the functions �m
m−k(x)

form a basis of Vm, thus (B) is fulfilled iff Qm = 0 for all m = 1, . . . ,N . Thus (B) is equiv-
alent to the condition BN is an upper-diagonal matrix.

Assume Bm upper diagonal for some m. This is verified for m = 1 where B1 = 1. Then
by (3.47) [Bm+1]i,j = [Bm]i,j for i = 1, . . . ,m, and Bm+1 is still upper-diagonal iff

[Bm+1]m+1,j ≡ (φm ∗ �m+1
m+1−j )(x

m
m+1) = cmδj,m+1, cm �= 0, (3.49)

cm �= 0 because ZN �= 0. Finally, the orthogonal relations (3.24) imply that φm(xm
m+1, x) =

cm�m+1
0 (x), which is Assumption (A) of the lemma. �

Proof of Theorem 2.1 It consists in an application of Lemma 3.4, with

φn(x
n
i , xn+1

j ) = 1(xn
i > xn+1

j ), n = 1, . . . ,N − 1, (3.50)

and

�N
N−i (x) = (−1)N−iF−N+i (x − yi, t), i = 1, . . . ,N. (3.51)

An important point is that in (3.3) the functions Fi ’s are defined by an integral enclosing
w = 0 and w = 1. At this stage, we have only functions Fi ’s for i ≤ 0. In this case, as
mentioned around (3.6), w = 1 is actually not a pole, thus the weight (3.19) and the weight
(3.20) with the above replacements are proportional. The definition of the �’s using only one
pole fit exactly in the framework of Lemma 3.4. In fact, by (3.8), we have the composition
rule

(φ ∗ �n+1
n+1−j )(x) = �n

n−j (x), (3.52)
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which gives (3.22) by iterations. In our setting, if we sum up all the variables {xm
j ,1 ≤ m < n,

1 ≤ j ≤ m}, we get a Vandermonde determinant in the variables xn
j ’s. Thus the space Vn of

Lemma 3.4 is generated by {1, x, . . . , xn−1} and �n
k are polynomials of order at most n − 1.

A simple computation using (2.5) leads to

∑
x

�n
j (x) =

{
0, j = 1, . . . , n − 1,
1, j = 0,

(3.53)

which, together with (3.24) leads to �n
0(x) = 1 = φn−1(∞, x). Thus we have a determinantal

system with kernel (3.25), which can be rewritten as

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +
n2−1∑
i=0

�
n1
n1−n2+i (x1)�

n2
i (x2). (3.54)

Since in this paper we explain the detail of the derivation in [34], it is useful to point out
a difference. There one does not obtain directly φ(n1,n2) as in Theorem 2.1. There the one-
time transition becomes φn(x, y) = −1(y ≥ x) and the representation (3.3) has to be used
instead. The final form of the kernel ((13) in [34]) comes from splitting the contribution
from the pole at w = 1 and the remainder. In the geometric picture, it corresponds to have
the conjugate LGV graph with reservoir of particles at −∞ instead of at +∞. �

4 Orthogonalization

In order to get the kernel for the alternating initial configuration, i.e., for the case where
particles initially occupy exactly the sublattice 2Z, we start with a finite number of parti-
cles, 2N . In the second step we will focus on the region where the N -dependence vanishes.
In this way we will get the kernel for the system we actually are interested in.

Consider the case where at time t = 0 there are 2N particles placed every second site
centered around the origin, see Fig. 3, namely

yi = 2N − 2i, i = 1, . . . ,2N. (4.1)

From Theorem 2.1, the kernel is known once the orthogonalization is carried out. Here we
state the result and a short proof. In Appendix 2 we explain a constructive way of obtaining
needed functions using Charlier orthogonal polynomials.

Fig. 3 Trajectories of the 2N

particles. The black dots are the
initial positions and the white
dots are the positions of the
particles at some later time t .
This is a scheme leading, in the
N → ∞ limit, the alternating
initial configuration on Z
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Lemma 4.1 The functions �n
k (x) and �n

k(x) have the following integral representations.
Let z = x + 2n − 2N . Then

�n
k (x) = (−1)k

2π i

∮
�0

dw

wz+1
e(w−1)t ((w − 1)w)k (4.2)

and

�n
k(x) = (−1)k

2π i

∮
�0

dv

v

1 + 2v

evt

(1 + v)z−1

(v(1 + v))k
(4.3)

where �0 is an anticlockwise simple loop enclosing only the pole at 0.

Proof We have

�n
k (x) = (−1)kF−k(x − yn−k, t) = (−1)kF−k(z − 2k, t). (4.4)

Then (3.3) leads directly to (4.2). Next we prove that (4.3) satisfy the orthogonality relation
(3.24). Since �n

k (x) = 0 for z(x) < 0, we have

∑
z≥0

�n
k (x(z))�n

j (x(z)) = (−1)k

2π i

∮
�0

dw(w−1)t ((w − 1)w)k

× (−1)j

2π i

∮
�0

dv

v

(1 + 2v)

evt (v(v + 1))j

∑
z≥0

(v + 1)z−1

wz+1
(4.5)

provided that the integration domain satisfy |1 + v| < |w|. The last sum gives

∑
z≥0

(v + 1)z−1

wz+1
= 1

(w − (1 + v))(1 + v)
. (4.6)

Thus (4.5) has a simple pole at w = 1 + v, and once the integral over w is computed, we get

∑
z≥0

�n
k (x(z))�n

j (x(z)) = (−1)k+j

2π i

∮
�0

dv
1 + 2v

v(1 + v)
(v(1 + v))k−j . (4.7)

The final step is a change of variable. Let u = v(1 + v). Then

du = (1 + 2v)dv (4.8)

and the integral is again around 0. Thus we get

∑
z≥0

�n
k (x(z))�n

j (x(z)) = (−1)k+j

2π i

∮
�0

du
1

uj+1−k
= δj,k. (4.9)

�

Once the orthogonalization is made, we determine the kernel of Theorem 2.2.

Proof of Theorem 2.2 We need to derive the formula for the first term (the main part) of the
kernel. For convenience, we first shift the integrating variable of �n

k to go around −1 by
setting u = w − 1. This leads to

�n
k (x) = (−1)k

2π i

∮
�−1

du

(1 + u)z+1
eut (u(1 + u))k (4.10)



1072 J Stat Phys (2007) 129: 1055–1080

with z = x +2n−2N . We start with particles at positions yi = 2N −2i, i = 1, . . . ,2N . The
main term in the kernel is written, with zi = xi + 2(ni − N), as

n2−1∑
k=0

�
n1
n1−n2+k(x1)�

n2
k (x2) = (−1)n1−n2

(2π i)2

∮
�0

dv
(1 + 2v)(1 + v)z2

evt (v(1 + v))n2

×
∮

�−1

du
eut (u(1 + u))n1

(1 + u)z1+1

1

u(1 + u) − v(1 + v)
(4.11)

provided that the integration paths satisfies (a) |u(1 + u)| > |v(1 + v)|, and (b) u = 0 is not
inside the contour �−1. To obtain this expression we first take the finite sum over k inside
the integrals, and secondly we extend it to k = −∞. This can be done since the sum is
absolutely summable because of (a) and we do not create new poles inside the integration
contours because of (b). For example, we can set �1 by |1 + u| = 1/2 and take �0 to be a
contour with |v| small enough.

To obtain the kernel for the alternating initial configuration we focus on the xi ’s far
enough from the right-most particle so that the system in the considered region becomes
independent of the fact that we have only a finite number of particles. This is obtained when
zi < ni , i.e., whenever u = −1 is not anymore a pole. This condition is satisfied for any
fixed xi (i.e., around the origin) and any finite time t by taking N large enough. In fact, it
corresponds to taking ni − N = O(1) in N . In this case we are left with one simple pole
at u = −1 − v. Denote ni = N + mi , then zi = xi + 2mi and the main part of the kernel
becomes, for any xi ’s as N → ∞,

n2−1∑
k=0

�
n1
n1−n2+k(x1)�

n2
k (x2) = −1

2π i

∮
�0

dv
(1 + v)x2+m1+m2

(−v)x1+m1+m2+1
e−t (1+2v). (4.12)

Finally, by relabelling the particles we obtain (2.8). �

5 Asymptotic Analysis

In this section we do the asymptotic analysis for the alternating initial conditions and prove
Theorem 2.3. Just to remind, the scaling limit we have to consider is

xi = [−2uit
2/3 − si t

1/3],
ni = [t/4 + uit

2/3]. (5.1)

Proof of Theorem 2.3 The pointwise limit of the first term is quite easy to obtain. Let us set
a = (u2 − u1)t

2/3 − 1, b = (s2 − s1)t
1/3 + 1, and ε = b/a. Then we have to compute

t1/3

(
a(2 + ε)

a

)
. (5.2)

We simply use x! = √
2πx exp(x ln(x) − x)(1 +O(x−1)). Since for s1, s2 is a bounded set,

ε → 0 as t → ∞, we have that

t1/3

(
a(2 + ε)

a

)
= t1/32x1−x2

1√
4πa

exp(−b2/4a)(1 +O(ε)) (5.3)
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and by replacing back the expressions of a and b we get,

lim
t→∞ t1/3

(
x1 − x2 − 1

n2 − n1 − 1

)
2x2−x1 = 1√

4π(u2 − u1)
exp

(
− (s2 − s1)

2

4(u2 − u1)

)
. (5.4)

Next we analyze the second of the kernel (2.8) multiplied by t1/3. This can be written as

−t1/3

2π i

∮
�0

dv exp(tf0(v) + t2/3f1(v) + t1/3f2(v) + f3(v)) (5.5)

with

f0(v) = 1

2
ln

(
1 + v

−v

)
− 1 − 2v,

f1(v) = −(u2 − u1) ln((1 + v)(−v)),

f2(v) = −s2 ln(1 + v) + s1 ln(−v),

f3(v) = − ln(−v).

(5.6)

To do a steep descent analysis we first have to find the stationary points of f0(v). Simple
computations lead to

df0(v)

dv
= − (1 + 2v)2

2v(1 + v)
, (5.7)

which has a double zero at v = −1/2. Moreover,

d2f0(v)

dv2

∣∣∣∣
v=−1/2

= 0,
d3f0(v)

dv3

∣∣∣∣
v=−1/2

= 16. (5.8)

The steep descent path �0 used for the analysis, shown in Fig. 4, is given by �0 = �1
0 ∨

�2
0 ∨ �3

0 with

�1
0 = {

v = − 1
2 + we−iπ/3,w ∈ [0,1/2]},

�2
0 = {

v = − 1
2eiθ , θ ∈ [π/3,5π/3]}, (5.9)

�3
0 = {

v = − 1
2 + (

1
2 − w

)
eiπ/3,w ∈ [0,1/2]}.

Fig. 4 The steep descent path �0
used in the asymptotic analysis
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Let us verify that �0 is actually a steep descent path.2 On �2
0 ,

dRe(f0)(θ)

dθ
= −4 sin θ(1 − cos θ)

5 − 4 cos θ
. (5.10)

Therefore the real part of f0 is stationary only at θ = 0,π and the maximum is at θ = 0, the
minimum at θ = π . By symmetry we need to check only on �1

0 . We find

dRe(f0)(w)

dw
= − 8w2(1 + 2w2)

(1 + 2w + 4w2)(1 − 2w + 4w2)
(5.11)

which is strictly negative except at w = 0 where it is zero. Thus �0 is a steep descent path.
Consider now the piece of the path �δ

0 = {z ∈ �0||z + 1/2| ≤ δ}. Let us denote

F(v) = exp(tf0(v) + t2/3f1(v) + t1/3f2(v) + f3(v)).

Then since �0 is a steep descent path,

−t1/3

2π i

∮
�0

dvF (v) = −t1/3

2π i

∫
�δ

0

dvF (v) + −t1/3

2π i

∫
�0\�δ

0

dvF (v)

= −t1/3

2π i

∫
�δ

0

dvF (v) + F(−1/2)O(e−μt ) (5.12)

for some μ > 0 (in our case, μ ∼ δ3). The precise expression of F(−1/2) is

F(−1/2) = 22(u2−u1)t2/3+(s2−s1)t1/3+1 = 2x1−x2+1. (5.13)

For the integral on �δ
0 we can apply Taylor development. On �δ

0 we have v = −1/2 +
e±iπ/3w, 0 ≤ w ≤ δ, and we obtain

f0(v) = −8

3
w3 +O(w4),

f1(v) = 2(u2 − u1) ln 2 + 4(u2 − u1)e
2π i/3w2 +O(w3),

f2(v) = (s2 − s1) ln 2 − 2(s1 + s2)e
iπ/3w +O(w2),

f3(v) = ln 2 +O(w)

(5.14)

where the error terms O(· · ·) are uniform for s1, s2 in a bounded set. Set f̃i (v) to be
the expressions fi(v) without the error terms, and similarly F̃ (v): F̃ (v) = exp(tf̃0(v) +
t2/3f̃1(v) + t1/3f̃2(v) + f̃3(v)). Then

−t1/3

2π i

∫
�δ

0

dvF (v) = −t1/3

2π i

∫
�δ

0

dvF̃ (v) + −t1/3

2π i

∫
�δ

0

dv(F (v) − F̃ (v)). (5.15)

2For an integral I = ∫
γ dzetf (z) , we say that γ is a steep descent path if (1) Re(f (z)) is maximum at some

z0 ∈ γ : Re(f (z)) < Re(f (z0)) for z ∈ γ \{z0}, and (2) Re(f (z)) is monotone along γ except at its maximum
point z0 and, if γ is closed, at a point z1 where the minimum of Re(f ) is reached.
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To estimate the second integral, we use the inequality |ex − 1| ≤ e|x||x|. Thus∣∣∣∣∣
−t1/3

2π i

∫
�δ

0

dv(F (v) − F̃ (v))

∣∣∣∣∣
≤ t1/3

π

∫ δ

0
dw|F̃ (v(w) = e−iπ/3w − 1/2)|

× eO(w4t+w3t2/3+w2t1/3+w)O(w4t + w3t2/3 + w2t1/3 + w)

= t1/3

π

∫ δ

0
dw|etf̃0(v(w))(1+χ1)+t2/3f̃1(v(w))(1+χ2)+t1/3f̃2(v(w))(1+χ3)|

×O(w4t + w3t2/3 + w2t1/3 + w) (5.16)

for some χ1, χ2, χ3 which can be made as small as desired by choosing δ small enough.
At the integration boundary w = δ the leading term is exp(−8δ3t (1 + χ1)/3). This easily
implies that the integral remains bounded as t → ∞. Now we do the change of variable
z = t1/3w. The t1/3dw = dz and O(w4t + · · · + w) = O(z4 + · · · + z)t−1/3. The rest of the
integral is e− 8

3 z3(1+χ1)+c1z2+c2z for some constants c1, c2, since the function f̃i do not contains
the error terms. The integrand is then t−1/3 times O(z4 +· · ·+ z)e− 8

3 z3(1+χ1)+c1z2+c2z and the
integral is on [0, δt1/3]. The e− 8

3 z3(1+χ1) dominates the integral for large z. Thus t1/3 × (5.16)

remains finite in the t → ∞ limit. Therefore the above estimate of the error term becomes
F(−1/2)O(t−1/3).

The final step is to compute −t1/3

2π i

∫
�δ

0
dvF̃ (v). Extending δ to ∞ we only make an error

of order F(−1/2)O(e−μt ) for some 0 < μ ∼ δ3 and this leads to the integration along the
path γ∞ = {e−iπsgn(w)/3|w|,w ∈ R}. Therefore

−t1/3

2π i

∫
�δ

0

dvF̃ (v) = F(−1/2)
−t1/3e−iπ/3

2π i

∫ ∞

0
dw2e−8w3t/3

× e4(u2−u1)w2t2/3e−2π i/3
e−2(s1+s2)wt1/3e−iπ/3 + F(−1/2)O(e−μt ). (5.17)

The change of variable z = 2t1/3e−iπ/3w leads then to

−t1/3

2π i

∫
�δ

0

dvF̃ (v) = F(−1/2)

−4π i

∫
γ∞

dzez3/3+(u2−u1)z2−(s1+s2)z + F(−1/2)O(e−μt ). (5.18)

Finally we use an Airy function representation

1

−2π i

∫
γ∞

dvev3/3+av2+bv = Ai(a2 − b) exp(2a3/3 − ab) (5.19)

to obtain the final result

lim
t→∞

2

F(−1/2)

∫
�0

dvF (v) = Ai(s1 + s2 + (u2 − u1)
2)e2(u2−u1)3/3+(s1+s2)(u2−u1). (5.20)

�
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Appendix 1: Compact Form for the Extended Kernel

In this appendix we show that the entries of the compact form of the kernel (1.4) agree
with (2.10). Let us introduce some notations. Let Q be the multiplication operator by the
position, D be the differentiation operator, and let � be the Laplacian. On Schwarz test
functions f ∈ S(R),

(Qf )(x) = xf (x), (Df )(x) = ∂

∂x
f (x), (�f )(x) = ∂2

∂x2
f (x). (6.1)

Moreover, denote by Kλ the operator with kernel Kλ(x, y) = Ai(x + y + λ) and the Airy
operator HA = −� + Q.

We will apply Baker-Campbell-Haussdorf formula. If [A, [A,B]] = c1 and
[B, [A,B]] = c′1 for some constant c, c′, then

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]] (6.2)

from which follows, for [A,B] = c1,

eA+B = eAeBe− 1
2 [A,B]. (6.3)

Moreover, we will use the property of Airy functions

Ai′′(x + y) = (x + y)Ai(x + y). (6.4)

We collect some useful properties in the following lemma.

Lemma 6.1

(1) Commutation relations: [Q,D] = −1, [Q,�] = −2D,
(2) HAKλ = −Kλ(λ1 + Q),
(3) etDKλ = Kλ+t and Kλe

tD = Kλ−t ,
(4) e−t�Kλ = e− 2

3 t3−λt e−tQKλ+t2e−tQ.

Proof (1) By applying to f ∈ S(R) we get [Q,D]f (x) = −f (x) and [Q,�]f (x) =
−2f ′(x) = −2Df (x). (2) We apply the definition of HA and use (6.4) to get

(HAKλf )(x) = −
∫

dyAi(x + y + λ)(y + λ)f (y) = −(Kλ(λ1 + Q)f )(x). (6.5)

(3) Follows from (etDf )(x) = f (x + t). (4) We use the property (2) and (6.2) with A = −t�

and B = −t (−� + Q), to get

e−t�Kλ = e−t�e−t (−�+Q)etHAKλ = e− 1
6 t3

e−tQ+t2DKλe
−tQe−λt . (6.6)

Then apply (6.3) with A = −tQ and B = t2D to get (4). �

What we have to compute explicitly is e−u1�K0e
u2�. From (4) of Lemma 6.1 we have

e−u1�K0e
u2� = e− 2

3 u3
1e−u1QKu2

1
e−u1Qeu2�. (6.7)
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The last part can be rewritten as

e−u1Qeu2� = e(u2�−u1Q− 1
6 u2u2

1−u1u2D)+(2u1u2D) (6.8)

by (6.2) with A = −u1Q and B = u2�. Then using (6.3) with A = u2� − u1Q − 1
6u2u

2
1 −

u1u2D and B = 2u1u2D we obtain

e−u1Qeu2� = e2u1u2Deu2�e−u1Qeu2u2
1 . (6.9)

Plugging this back into (6.7) we have

e−u1�K0e
u2� = e− 2

3 u3
1+u2u2

1e−u1QKu2
1
e2u2u1Deu2�e−u1Q. (6.10)

Then we apply (3) of Lemma 6.1, namely Ku2
1
e2u2u1D = Ku2

1−2u2u1
, and we exchange the

order of K , and eu2� because are both symmetric and apply (4) of Lemma 6.1. This results
into

e−u1�K0e
u2� = e− 2

3 (u1−u2)3
e−(u1−u2)QK(u1−u2)2e−(u1−u2)Q. (6.11)

Explicitly

(e−u1�K0e
u2�)(s1, s2) = e

2
3 (u2−u1)3

e(u2−u1)(s1+s2)Ai(s1 + s2 + (u1 − u2)
2). (6.12)

Thus we showed how the second term in (1.4) leads to the corresponding one in (1.5). It
remains the first one, (e(u2−u1)�)(s1, s2), for u2 > u1. This is just the one-dimensional heat
kernel, for which it is well known that (see e.g. [26])

(e(u2−u1)�)(s1, s2) = 1√
4π(s2 − s1)

exp

(
− (u2 − u1)

2

4(s2 − s1)

)
. (6.13)

Appendix 2: Charlier Polynomials

In this appendix we explain a constructive method to do the orthogonalization. Let Cn(x, t)

be the Charlier polynomial of degree n. They are orthogonal polynomials with respect to the
weight on {0,1, . . .} given by

wt(z) = e−t t z/z! (7.1)

which are traditionally normalized via

∑
z≥0

Cn(z, t)Cm(z, t)wt (z) = n!
tn

δn,m (7.2)

or, equivalently, Cn(z, t) = (−1/t)nzn + · · ·. They can be expressed in terms of hypergeo-
metric functions

Cn(x, t) = 2F0(−n,−x; ;−1/t) (7.3)

and satisfy the recurrence relation

x

t
Cn(x − 1, t) = Cn(x, t) − Cn+1(x, t). (7.4)
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From the generating function of the Charlier polynomials

∑
n≥0

Cn(x, t)

n! vn = ev(1 − v/t)x (7.5)

one gets the integral representation

1

n!Cn(z, t) = 1

2π i

∮
�0

dv

v

ev(1 − v/t)z

vn
. (7.6)

For a good reference on orthogonal polynomials, see [20].
It is not too difficult to see that the functions �N

k defined in Lemma 4.1 can be expressed
in terms of the Charlier orthogonal polynomials as

�N
k (z) = e−t t z−k

(z − k)!Ck(z − k, t). (7.7)

Using the recurrence relation (7.4) repeatedly we obtain

�N
k (z) = wt(z)

2k∑
l=0

Sk,lCl(z, t), (7.8)

where the entries of the matrix S are

Sk,l = (−1)l−k

(
k

l − k

)
. (7.9)

Notice that S is not a square matrix. From this it follows that the polynomials �N
k which

satisfy
∑
z≥0

�N
k (z)�N

j (z) = δk,j , (7.10)

are given by

�N
k (z) =

N−1∑
l=0

Cl(z, t)
t l

l! S̃
−1
l,k (7.11)

where by S̃−1
i,j we mean the (i, j)-entry of the inverse of the square matrix S̃ = [Si,j ]0≤i,j≤N−1

obtained by restricting S to the first N indices. The first main difficulty is to obtain the
inverse of S̃. After some work we could determine it, namely

S̃−1
i,j =

(
2j − i

j − i

)
i

2j − i
(7.12)

with the identification S̃−1
0,0 = 1 and the convention that the RHS of (7.12) is zero when i > j .

At this point we substitute (7.12) into (7.11), perform the summation, and finally change
the variable v = −wt . The final result is the biorthogonal functions �N

k reported in (4.3).
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